A

Adrafinil, 193–212
 chemistry, 194–195
 clinical trials, 204–207
 depression, 207
 disorders of vigilance, 204–206
 motor organization deficits, 206–207
 mechanisms of action, 200–204
 \(\alpha_1 \)-adrenergic receptor hypothesis, 201
 effect on brain metabolism, 202
 neuroprotective effects, 203–204
 pharmacokinetics, 195–196
 pharmacology, 197–204
 behavioral activity, 197–199
 effects on EEG and sleep, 200
 effects on learning and memory, 199–200
 other behavioral effects, 199
 toxicology, 195–196

ADCI, see SGB-017

Alcohol and neurodegeneration, 379–394
 apoptosis and, 388
 brain damage from, 388–389
 cell adhesion molecules and, 388
 excitotoxicity and, 382–384
 neurotoxicity of, 379–382
 neurotrophic factors and, 385–388
 oxidative stress and, 384–385

Alzheimer’s disease, 70–76
 amyloid and, 72
 amyloid-\(\beta \) peptides and, 74–75
 animal models, 73
 cholinesterase in, 72–73
 glial cells in, 75
 motoneuron and, 313–315
 new results in research, 73
 trace metals and, 76

Anti-addictive drugs
 18-methoxycoronaridine, 27–42
 SR 141716A, 43–58

Anti-Alzheimer’s drugs
 huperzine A, 281–300
 metrifonate, 13–26
 milameline, 93–104

Antianapoptotic agents
 R-2HMP, 105–124

Anticonvulsants
 NNC-711, 147–148
 SGB-017,

Antidepressants
 adrafinil, 193–212
 isatin, 331–346
 robalzotan, 213–232

Antiparkinsonian drugs
 mesulergine, 233–248

Antipsychotic drugs
 ceruletide, 145–164
 LY 354740, 1–12
 risperidone, 249–264

C

Ceruletide, 145–164
 chemistry, 146–147
 clinical trials in, 156–158
 dementia, senile, 158
 dyskinesia, 157
 panic disorder, 158
 schizophrenia, 156
 pharmacokinetics and metabolism, 155
 pharmacology, 147–155
 amino acidergic neurons, effects on, 152
 animal models of neuropsychiatric
diseases, effects on, 152–155
 dopaminergic functions,
 interactions with, 148–152
 sites of action, 147–148
 toxicology, 155

Cholinergic mechanisms, 301–316
 acetylcholine
 release at cholinergic gene locus, 306–308
 synthesis and metabolism, 309
 acetylcholinesterases, 304–306
 toxicity of, 311–313
 cholinergic system,
 function and behavior, 310
 interaction with other systems, 310–311
 motor nerve terminals, structure of, 304
 nicotinic and muscarinic receptors and, 302–304

Clenbuterol, 347–364
 \(\beta \)-adrenoceptor stimulant effects, 356–357
 neuroprotective effects, 353–356
 NGF induction by, 348–356
 NGF receptor P75, role of, 359–361

E

Estrogens actions in the brain, meeting report, 77–82
 estrogens and hypothalamic function, 77–79
 estrogens, memory and the hippocampus, 81–82

Experimental biology’99, meeting report, 185–188

G

GABA\(_A\) receptor ligands, 125–144
 acetylcholinesterase inhibitors, 139–140
 benzodiazepines, 126–129
β-carbolines, 129–132
flavonoids, 135–137
imidazobenzothiazoles, 137–139
imidazopyrimidines, 137
imidazoquinolines, 137
imidazoquinolinones, 133–135
imidazoquinolines, 137
pharmacophore models, 140–141
pyrazoloquinolinones, 132–133

Huperzine A, 281–300
cholinesterase inhibition by, 283–288
clinical trials, 296–297
effects on cholinergic parameters, 289–291
effects on memory impairment, 292–294
effects on neurotransmitter levels, 288–289
neuroprotective effects, 291–292
pharmacokinetics, 294–295
toxicology, 295–296

Interleukin-3 (IL-3), 265–280
adverse effects on the nervous system, 275–276
chemistry, 266
effects on the central nervous system, 269–272
cholinergic neurons, in vitro, 269–270
cholinergic neurons, in vivo, 270–271
other neurons, in vitro, 271–272
other neurons, in vivo, 272
peripheral nervous system and, 268–269
pharmacology, 266–267
therapeutic prospects in neurologic disorders, 275
transgenic and knockout mice, effects in, 273–274
Ion channel research conference, meeting report, 177–184

Isatin, 331–346
acetylcholine levels in striatum, effect on, 339–341
blood pressure in rats, effect on, 338–339
chemistry, 334
dopamine levels in striatum, effect on, 339–341
MAO inhibitory activity, 334–336
spectrum of biological properties, 342–343
tissue monoamine levels, effect on, 336–338

LY 354740, 1–12
antianxiety effects, 5–7
anxiolytic effects, 7–8
chemistry, 2
effects on drug withdrawal, 7
in vitro receptor pharmacology, 2–3
in vivo studies, 5–9
modulation of synaptic transmission by, 3–5
neuroprotective effects, 8–9

Melatonin and its potential, meeting report, 59–63
Mesulergine, 233–248
chemistry, 234
clinical studies, 240–243
Parkinson’s disease, 240–242
pituitary adenomas, 242–243
pharmacokinetics, 240
pharmacology, 234–237
effect on lactotrophs, 236
serotonergic system, 236–237
toxicology, 237–240
18-Methoxycoronaridine, 27–42
chemistry, 28
neurotoxicity, 37–38
pharmacokinetics, 36–37
pharmacology, 29–36
cardiovascular effects, 38
in vitro studies, 34–36
microdialysis studies, in vivo, 33–34
self administration studies, 29–33
Metrifonate, 13–26
chemistry, 14
clinical trials, 22–23
dosage, 21
effects on memory, learning, and behavior, 17
pharmacodynamics, animal, in vitro, 14–15
in vivo, 15–16
pharmacokinetics, human, 18
safety, human, 21
toxicity, animal, 17–18
Milameline, 93–104
clinical experience, 100–101
pharmacokinetics, 99
pharmacology, 94–99
in vitro, 94–97
in vivo, 97–99
toxicology, 99–100

NAD-299, see robalzotan
Neurodegeneration, fourth annual
Promega symposium, 83–90
developmental and degenerative cell death, relationships, 84–85
disease mechanisms, 84
Huntington’s disease, 86
model systems, 88–89
mutations in RNA, 86
Parkinson’s disease, genetic and environmental interactions, 87–88
Neuroimmune interactions, meeting report, 64–69
clinical prospects, 69
cytokines, sickness and depression, 67–68
inflammation in Alzheimer’s disease, 65
Neuroprotective drugs, adrafinil, 193–212
interleukin-3, 265–280
clenbuterol, 347
NMDA antagonists, 165–176
barbiturate tolerance and NMDA, 170
benzodiazepine tolerance and NMDA, 169–170
ethanol tolerance and NMDA, 167–169
glutamate and NMDA receptor, 166
opiate tolerance and NMDA, 170–172
other drugs tolerance and NMDA, 172

NNC-711, 317–330
 chemistry, 319
 pharmacology, 320–328
 age-related differences in efficacy, 323–327
 anticonvulsant effect, 322–327
 behavioral effects, 327–328
 binding profile, 320
 effect on GABA levels, 321–322
 GABA uptake inhibition, 320

R
R-2HMP, 105–124
 chemistry, 108
 mechanisms of antiapoptotic action, 117–119
 pharmacokinetics and metabolism, 116
 pharmacology, 106–114
 antiapoptotic activity, 107–113
 cancer modulatory action, 114
 MAO inhibition, 106–107
 other actions, 115–116
 toxicity, 119
Risperidone, 249–264
 clinical efficacy, 256–258
 comparison to conventional antipsychotics, 256–257
 comparison to other atypical antipsychotics, 257
 other indications, 258
 cost effectiveness, 258–259
 dosage, 259–260
 pharmacokinetics, 254–256
 accumulation, 255–256
 absorption, 254
 elimination, 255
 metabolism, 254–255
 pharmacology, 251–254
 in vitro studies, 251–253
 in vivo animal studies, 253–254
 PET studies, 254
 safety and toxicology, 259
Robalzotan (NAD-299), 213–232
 behavioral pharmacology, 224–225
 cage-leaving response, effect on, 225
 8-OH-DPAT-induced behavioral syndrome, effect on, 225
 locomotion in habituated rats, effect on 224–225
 biochemical pharmacology, 215–220
 autoradiography, human brain, 219
 positron tomography, monkey brain, 219–220
 receptor binding, in vitro, 215–217
 in vivo, 217–219
 biochemistry, 220–222
 effects on dopamine system, 220–221
 microdialysis studies, rat brain, 221–222
 suppression of 5-HT synthesis, 220
 effects on corticoids secretion, 223
 effects on 8-OH-DPAT-induced hypothermia, 223
 effects on 8-OH-DPAT-induced facilitation of ejaculation, 224
 electrophysiological studies, 22–223
 general pharmacology, 227–228
 pharmacokinetics and metabolism, 227
 physicochemical properties, 214
 subchronic treatment, 225–226
 behavioral syndrome, effect on, 226
 5-HT synthesis, effect on, 226
 receptor binding, effect on, 225–226

S
SGB-017, 365–378
 chemistry, 366
 pharmacology, 366–376
 drug discrimination, 374
 epilepsy models, activity in, 370–373
 learning and memory, effects on, 375–376
 NMDA blockade, by, 366–367
 sodium channel blockade, by, 367–370
 vacuolization, 374–375
SR 141716A, 43–58
 Interactions with CB receptors, 46–49
 In vivo studies, 49–53
 interactions with cannabinoid agonists, 49–53

V
Vigilance promoting drugs,
adrafinil, 193–212